Use of Organic Corrosion Inhibitors in High Performance Coatings

Anthony Toussaint | Manager, R&D and Technical Services

April 15, 2015
Challenges in the Corrosion World

<table>
<thead>
<tr>
<th>Corrosion Inhibitors</th>
<th>Chromate salts</th>
<th>Zinc salts</th>
<th>Barium salts</th>
<th>Nitrites & Nitrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk (Humans)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Risk (Environment)</td>
<td>High</td>
<td>High</td>
<td>Aquatic toxin Harmful if inhaled or swallowed</td>
<td>High</td>
</tr>
</tbody>
</table>

- Chromate salts are harmful if inhaled or swallowed.
- Zinc salts have low risk for humans and high risk for the environment.
- Barium salts are low risk for both humans and the environment.
- Nitrites & Nitrates are high risk for both humans and the environment.
Types of Corrosion

Of concern in coatings...

- **Flash Rust**: Rapid, widespread corrosion seen during initial application.
- **Galvanic**: Contact between two alloys which promotes oxidation of the less noble metal.
- **Filiform**: Differential aeration promotes this unique form of corrosion.

Corrosion inhibitors - whether inorganic or organic - retard the corrosion rate by affecting the 2 elements of the corrosion process

1. Anodic reactions – Metal ions pass into solution from anode
2. Cathodic reactions – e^- flowing from metal to an acceptor

Corrosion inhibitors perform by:

- Increasing the anodic or cathodic polarization behavior
- Reducing the movement or diffusion of ions to the metallic surface
- Increasing the electrical resistance of the metallic surface
- Interacting with the metallic surface or the environment near it
- Adsorbing themselves on the metallic surface by forming a film
Mixed Metals Passivation

- **Anodic Reaction**
 - Slow the reaction rate of anodic dissolution.
 - Produce reaction products which form a thin film over anode.

- **Cathodic Reaction**
 - Disrupt the flow of electrons from the anode to the cathode.
 - Produce reaction products which precipitate selectively at cathodic sites.
• **Indirect Inhibitors:** Requires a reaction between the inhibitive pigment and the resin system. It is the reaction by-products which are inhibitive in nature not the pigment.

• **Direct Inhibitors:** The soluble ions of the pigment are inhibitive in nature. They usually require no reaction within the resin system.
Inorganic Inhibitors

<table>
<thead>
<tr>
<th>Commonly Used Inhibitors</th>
<th>Composition of Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zinc Phosphate</td>
<td>• ([\text{Zn}_3\text{(PO}_4\text{)}_2\cdot 2\text{H}_2\text{O}])</td>
</tr>
<tr>
<td>• Modified Zinc Phosphate</td>
<td>• ([\text{M}^*\cdot \text{Zn}_3\text{(PO}_4\text{)}_2\cdot 2\text{H}_2\text{O}])</td>
</tr>
<tr>
<td>• Complex Phosphosilicate</td>
<td>• ([\text{M}^*\cdot \text{P}_2\text{O}_5\cdot \text{SiO}_2\cdot x\text{H}_2\text{O}])</td>
</tr>
<tr>
<td>• Modified Borates</td>
<td>• ([\text{M}^*\cdot \text{B}_2\text{O}_3\cdot x\text{H}_2\text{O}])</td>
</tr>
<tr>
<td>• Complex Borosilicates</td>
<td>• ([\text{M}^*\cdot \text{B}_2\text{O}_3\cdot \text{SiO}_2\cdot x\text{H}_2\text{O}])</td>
</tr>
</tbody>
</table>

\(\text{M}^*\) may represent one of more of the following metals: Calcium, Barium, Strontium, Molybdenum, Aluminum.
Inorganic Inhibitors

<table>
<thead>
<tr>
<th>Description</th>
<th>Composition</th>
<th>Anticorrosive Mechanism</th>
<th>Ions released</th>
<th>End Use Coatings Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic</td>
<td>Zinc Phosphate</td>
<td>Anodic passivation</td>
<td>Zinc and Phosphate</td>
<td>Water-borne, Solvent borne,</td>
</tr>
<tr>
<td>Inorganic A</td>
<td>Calcium Borosilicate</td>
<td>Anodic passivation & Saponification</td>
<td>Calcium & Borate</td>
<td>Solvent borne, High Solids, 100% solids</td>
</tr>
<tr>
<td>Inorganic B</td>
<td>Calcium Phosphate, Magnesium, Aluminum Double Layer Hydroxide</td>
<td>Cathodic passivation & anion exchange</td>
<td>Calcium, Phosphate & Carbonate</td>
<td>Water-borne, Solvent borne, High Solids, 100% solids, Powder coatings</td>
</tr>
</tbody>
</table>
Mechanism(s) of Organic Inhibitors

1. **Interfacial activity**: Improve coating wet adhesion
2. **Anodic activity**: formation of insoluble complex salts at anodic defect sites
3. **Cathodic activity**: precipitate formation due to increased alkalinity at cathodic sites
4. **Barrier activity**: Reduce porosity & permeability in coating
5. **Adsorption activity**: protective layer formation
Water and corrosion products can cause adhesion loss, delamination, blistering.

- Coatings adhere by mechanical AND polar interactions, (e.g. hydrogen bonding). These can be displaced by water.
- Fe$_2$O$_3$ nH$_2$O is 2.16 times more voluminous than Fe metal, therefore a stable, continuous metal oxide film cannot form, leading to “bulging” rust.
Organic Corrosion Inhibitors

- Anodic passivation
 - Reduced uniform corrosion & flash rusting
- Improve adhesion
 - Reduced blistering
- Increase water resistance
- Form protective films
 - Adsorption mechanism
- Increase coating flexibility
- Increase chemical resistance
1. SILICONE ESTER HYDROLYZES TO FORMS SILANOL

\[
\text{RO-}[\text{Si}-\text{OR}]+\text{H}_2\text{O} \rightarrow \text{RO-}[\text{Si}-\text{OH}] + \text{ROH}
\]

2. SILOXANE BOND FORMS

\[
\text{RO-}[\text{Si}-\text{OH}]+\text{OH}+\text{OH}+\text{OH}+\text{OH} \rightarrow \text{RO}_4-\text{Si}_4\text{OR}_4 + \text{ROH}
\]

3. GELATION (CROSS-LINKING)

\[
\text{RO}_4-\text{Si}_4\text{OR}_4 \rightarrow \text{POLYMER} + \text{H}_2\text{O} + \text{ROH}
\]
Inorganic pigments can be trapped both within and underneath the network formed, thus providing excellent corrosion resistance – **SYNERGY!**
Organic Corrosion Inhibitors

<table>
<thead>
<tr>
<th>Description</th>
<th>Composition</th>
<th>Anticorrosive Mechanisms</th>
<th>Function</th>
<th>End Use Coatings Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic A</td>
<td>Amino Carboxylate</td>
<td>Anodic</td>
<td>Long-term, flash rust & in can rust inhibitor, adhesion</td>
<td>Water-based Acrylics, Polyurethane, Alkyds</td>
</tr>
<tr>
<td>Organic B</td>
<td>Organic Acid Amine Complex</td>
<td>Anodic</td>
<td>Long-term, flash rust, adhesion</td>
<td>Water-based Acrylics, Polyurethanes, UV, Polyester Alkyds</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Silane based sol-gel</td>
<td>Adhesion</td>
<td>Humidity resistance, barrier properties, adhesion</td>
<td>Water-based Acrylics, Polyurethanes, UV, Polyester Alkyds</td>
</tr>
</tbody>
</table>
Tips to Formulating

• Combine the inhibitors
 • Higher solubility \rightarrow short-term protection via passivation e.g. flash rust resistance
 • Lower solubility \rightarrow long-term protection via sustained release

• Add other pigments, additives, or organic inhibitors
 • To reinforce impermeability with extenders (e.g. mica)
 • To increase efficiency of inhibitor (basic pigments like calcium metasilicate, zinc oxide)
 • Organic inhibitors preferentially adsorb onto the metal surface and keep corrosive (de-passivating) ions out
Synergy: Inorganic-Organic

Mechanism I

Inorganic → Anodic Passivation
Ion Scavenging

Organic → Adhesion
Hydrophobicity

Mechanism II

Synergy
Accelerated Test Methods

- Salt Spray (ASTM B-117)
- QUV (ASTM 6154)
- Prohesion (ASTM G85 – Annex A5)
- QUV/Prohesion (ASTM 5894 -5)
- Humidity (ASTM 2247)
- SAE J2334
- Filiform Corrosion (Controlled Humidity)
 ASTM D 2803
- EIS (Electrochemical Impedance Spectroscopy)
HEAVY METAL FREE CORROSION INHIBITORS

Water Base Acrylic Latex Primer based on Maincote HG-86ER
Salt Spray - 500 hours - Matte CRS - 50 microns - % on tfw

Control
Inorganic B @ 5%
Inorganic B @ 5%
Organic B @ 1%

ASTM B117 Water Base Acrylic
2K Water Based Polyurethane on Bare Aluminum 3003
Dry Film Thickness: 3.0-4.5 mils (75-113 microns)

- Blank
- Competitor
- 2% - Inorganic B
- 0.5% - Hybrid
- 2% - Inorganic B
- 1.0% - Hybrid
ASTM B117: WB Epoxy – 168 Hours

Blank

Inorganic

Inorganic/Organic
ASTM B117: WB Epoxy – 336 Hours

Terminated at 168 Hrs

Blank
Inorganic
Inorganic/Organic
Bode Plots of 2K Epoxy

- Inorganic + Organic A
- Inorganic + Hybrid
- Inorganic
- Control
Bode Plots of 2K Epoxy

• Time zero to 168 hours
Bode Plots of 2K Epoxy

- Time zero and 168 hours
The change in Capacitance can be used to calculate the water uptake in a coating under immersion conditions.

\[\%v = \frac{\log(C_{C,0} / C_{C,24})}{\log(80)} \times 100 \]

Volume fraction of water

<table>
<thead>
<tr>
<th>TIME (days)</th>
<th>WATER PERMEATION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Inhibitor</td>
</tr>
<tr>
<td>4% organic corrosion inhibitor</td>
<td></td>
</tr>
</tbody>
</table>
Blank

Inorganic

Inorganic/Organic
Bode Plot of Medium Oil Alkyd

- Time zero and 168 hours

Inorganic + Organic B

Control
Identifying the correct inhibitor quickly can save you time and money.
NOTICE: Although the information and recommendations set forth herein (hereinafter “information”) are presented in good faith and believed to be correct as of the date hereof, ICL Performance Products LP (“ICL”) makes no representations or warranties as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will ICL be responsible for damages of any nature whatsoever resulting from the use or reliance upon information or the product to which information refers. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment or formulation in conflict with any patent, and ICL makes no representation or warranty, express or implied, that the use thereof will not infringe any patent. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

© 2013 ICL Performance Products LP. All rights reserved.